
In the April column I described a

mathematical model of the board

game Monopoly. At the start of

the game, when everyone emerges from

the GO position by throwing dice, the

probability of the first few squares be-

ing occupied is high, and the distant

squares are unoccupied. Using the con-

cept of Markov chains, I showed that

this initial bunching of probabilities ul-

timately evens out so that the game is

fair: everyone has an equal chance to oc-

cupy any square and to buy that prop-

erty. This outcome is true, however,

only when certain simplifying assump-

tions are made. Monopoly enthusiasts

were quick to point out that in the real

game, the long-term distribution of

probabilities is not even.

So what are the true probabilities?

The Markov chain method can also be

applied to the real game; I have to warn

you, however, that the analysis is com-

plex and requires substantial computer

assistance. Let me first remind you how

Markov chains are used for Monopoly.

A player can be in any one of 40 squares

on the board, which, for convenience,

we number clockwise from zero to 39,

starting with GO (which is zero). 

Given any two squares A and B, there

is a quantity called the transition prob-

ability—the probability that a player

who starts from A will reach B at the

conclusion of his or her turn at throw-

ing the dice. If this move is impossible,

then the transition probability is zero.

There are 40 × 40 = 1,600 transition

probabilities in all, and they can conve-

niently be encoded in a square matrix

M with 40 horizontal rows and 40 ver-

tical columns. For example, the entry in

the sixth row and 10th column describes

the probability of moving from Read-

ing Railroad to Connecticut Avenue in

one turn. The initial probabilities for a

player are 1 for position 0 and 0 for all

the rest; they can be encoded as a vec-

tor v = (1,0,. . . ,0).

The theory of Markov chains tells us

that the evolution of this probability

distribution is given by the sequence of

vectors v, Mv, M2v, M3v and so on:

each throw of the dice corresponds to

the matrix M operating on the vector v.

The resulting vectors can be calculated

by standard matrix methods, available

on any good computer algebra pack-

age. Such packages can also calculate

the so-called eigenvectors and eigenval-

ues of M. A vector u is an eigenvector

with eigenvalue c if Mu = c × u, where

c can be a real or complex number.

Markov’s key theorem is that the long-

term probability distribution is given by

the eigenvector whose eigenvalue has

the largest absolute value.

So in order to analyze the fairness of

Monopoly, all we need to do is com-

pute M and apply matrix algebra. For

my simplified model this was easy, but

for the real game we must also take into

account multiple rolls of the dice, spe-

cial squares such as GO TO JAIL and in-

structions on cards that players draw

when they land on CHANCE and COM-

MUNITY CHEST.

Many readers sent me their analyses

of the game. The most extensive were

from William J. Butler of Portsmouth,

R.I., Thomas H. Friddell, a Boeing en-

gineer from Maple Valley, Wash., and

Stephen Abbott of the mathematics de-

partment at St. Olaf College in North-

field, Minn., who collaborated with his

colleague Matt Richey. Butler wrote a

Pascal program, Friddell used Mathcad

and Abbott used Maple. The discussion

that follows is a synthesis of their re-

sults. (All models of Monopoly make

assumptions about the degree of detail

to be incorporated; there were insignifi-

cant differences in the assumptions made

by various correspondents.)

The first modification of my original

model is to take full account of the rules

for the dice. A pair of dice is thrown,

and if the result is a double, the player

throws again, but three consecutive dou-

bles lands him or her in Jail. The throw

of the dice is a tiny Markov chain in its

own right and can be solved by the usu-

al method. The result is a graph of the

probability of moving any given dis-

tance from the current position [see il-
lustration at left ]. Notice that the most

likely distance is 7, but that it is possible

to move up to 35 squares (by throwing

6,6; 6,6; 6,5). Yet the probabilities of
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Monopoly Revisited

JAIL, 
and the many ways to land in it, 

makes Monopoly complex.
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moving more than 29 squares are so

small that they fail to show up on the

graph. These results are incorporated

into M by appropriately changing each

individual entry.

Next the effect of the GO TO JAIL

square must be included. The Jail rules

pose a problem, because players can

elect to buy their way out or stay in and

try to throw doubles to get out. (Or at

later stages, when Jail becomes a refuge

from high rents, they can stay in and

hope not to throw doubles!) The prob-

abilities associated with this choice de-

pend on the player’s psychology, so the

process is non-Markovian. Most corre-

spondents got around this poser by as-

suming that the player did not buy his

or her way out. Then Jail becomes not

so much a single square as a Markov

subprocess—a series of three (virtual)

squares where players move from Just

in Jail to In Jail One Turn Already to

Must Come Out of Jail Next Turn. The

GO TO JAIL square itself has probability

zero because nobody actually occupies it. 

The next step is to modify M to ac-

count for the CHANCE and COMMUNI-

TY CHEST cards, which may send a play-

er to Jail or to some other position on

the board. This refinement can be made

quite straightforwardly (if laboriously)

by counting the proportion of cards that

send the player to any given square. The

extra probability is then added to the

corresponding position in M.

Having set up an accurate transition

matrix, one can work out the steady

state probabilities either by numerically

computing its eigenvalues and eigenvec-

tors or by calculating the effect of a

large number of moves from the powers

M2, M3 and so on. Thanks to Markov’s

general theorem, these two methods are

mathematically equivalent.

The long-term probabilities of occu-

pying different squares are shown in the

table [see illustration at left]. The most

dramatic feature is that players are al-

most twice as likely to occupy the Jail

square (5.89 percent) as any other. The

next most frequented square is Illinois

Avenue (3.18 percent). Of the railroads,

B&O is occupied most often (3.06 per-

cent) with Reading (2.99 percent) and

Pennsylvania (2.91 percent) just behind;

however, the probability of occupying

Short Line is much less (2.44 percent).

The reason for this is that unlike the

others, Short Line does not feature a

CHANCE card. Among the utilities, Wa-

ter Works (2.81 percent) wins out, with

Electric Company (2.62 percent) being

marginally less probable. GO (3.11 per-

cent) is the third most likely square,

and the third CHANCE square (0.87

percent) is the least likely—except for

GO TO JAIL (0 percent occupation by

logical necessity).

Friddell went further and analyzed

Monopoly’s property market, which is

what really makes the game interesting.

His aim was to find the break-even point

for buying houses—the stage at which

income starts to exceed costs—and to

determine the best strategies for buying

houses and hotels. The exigencies of the

property market depend on the number

of players and which version of the rules

is being adhered to. Assuming that hous-

es can be bought from the start, a num-

ber of general principles emerge:

• Although it costs more to buy hous-

es early, the break-even point will be

reached more quickly if you do.

• With two houses or fewer, it typi-

cally takes around 20 moves or more to

break even. Three houses produces a

definite improvement.

• Between GO and Indiana Avenue the

property square that offers the quickest

break-even point for three houses is

New York Avenue, which breaks even

in about 10 turns.

Properties beyond Indiana Avenue

were not evaluated: Friddell says he

LONG-TERM PROBABILITY DISTRIBUTION
shows that the Jail square is most likely to be occupied.
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Alan St. George’s sculptures in the May column stimulated a discussion of 
how to make three-dimensional objects based on regular polyhedra.

William J. Sheppard of Columbus, Ohio, sent details of his cunning method for
cutting a regular tetrahedron or octahedron from solid wood, pointing out that
“sturdy, solid models are more convenient than hollow models made by taping
together equilateral triangles.” His
methods can be found in the Journal
of Chemical Education, Vol. 44, page
683; November 1967. 

Norman Gallatin of Garrison, Iowa,
has been working on Platonic solids
for a quarter of a century and has de-
veloped remarkable sculptures, some
made from mirror glass. The picture
at the right represents a three-dimen-
sional projection of a four-dimension-
al hypercube and makes clever use of
reflections to create a complex effect
from simple components.

Any more mathematical sculptors
or modelers out there?              —I.S. 

FEEDBACK

“Tesseract View of HyperCube III”
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stopped there because he never expected

to publish his results. 

Many other readers contributed inter-

esting observations, and I can mention

a few. Simulations by Earl A. Paddon of

Maryland Heights, Mo., and calcula-

tions by David Weiblen of Reston, Va.,

confirmed the pattern of probabilities.

Weiblen points out that these probabil-

ities do not really affect how “fair” the

game is, because all players face the same

situation. Developing this point, he notes

that “if the rewards for landing on low-

probability squares were out of propor-

tion to that lowered probability, then

there would be a problem. When out of

sheer luck, a player in a game gets a big

advantage, the game is unfair.” He con-

cludes that Monopoly is not unfair in

that manner.

Bruce Moskowitz of East Setauket,

N.Y., remarked, “In my youth I played

Monopoly many times with my broth-

ers and friends, and it was common

knowledge that the tan-colored proper-

ties, St. James Place, Tennessee Avenue

and New York Avenue, are especially

valuable since there is a relatively high

probability of landing on one of them

when leaving Jail.” This suggestion re-

ceives confirmation from the calcula-

tions, given that all three of these prop-

erties figure among the top 12 in the

chart of probabilities.

Jonathan D. Simon of Cambridge,

Mass., chided me for suggesting that

cheap properties were put near the start

to help even out the game. “Monopoly

was.. .created during the Great Depres-

sion by a single designer, Charles Dar-

row, with lots of presumably unwelcome

time on his hands. Under the trappings

of wealth, the illustrated fat and rich

men, it is (slyly) a poor man’s game. In

virtually all Monopoly contests . . . the

‘cheap’ properties turn out to be the

most vital to Monopolize....The ‘lucra-

tive’ properties. . .are expensive to own

and prohibitively expensive to build

without a source of income provided by

ownership of a cheap group with hous-

es.” Point taken, though I would still

argue that putting a lucrative property

on the first half of the board would

definitely be unfair, by Weiblen’s criteri-

on that no player should gain a big ad-

vantage purely by chance. And I’m not

convinced that buying up lots of cheap

properties and renting them out is a

poor man’s strategy! SA
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